Optimization as a Model
for Few-Shot Learning

Sachin Ravi
Princeton University & Iwitter

In collaboration with

Hugo Larochelle

A RESEARCH AGENDA

+ Deep learning successes have required a lot of labeled training data

» collecting and labeling such data requires significant human labor

» Is that really how we'll solve Al ¢

* Alternative solution : explort other sources of data that are imperfect but plentiful
» unlabeled data (unsupervised learning)
» multi-modal data (multimodal learning)

» multi-domain data (transfer learning)

A RESEARCH AGENDA

* One example of this problem: few-shot learning

» Defined as k-shot, N-class classification: k examples for each of N classes

» Model needs to generalize after seeing few examples from each class

ME TA-LEARNING

* How to do well at few-shot training task?
» Training algorithms such as SGD or ADAM prone to overfitting with random initialization
- hard to know what good Initialization iIs
» We want to design a training algorithm for each small dataset
given training set with few examples

should output parameters € for model M that generalize well to test set

» |dea: let's learn such a training algorithm, end-to-end

» this Is known as meta-learning or learning-to-learn

ME TA-LEARNING

» Consider a training algorithm
v input: training set Dipain = { (X, Y)Y,
» output: parameters € of model M

» objective: good performance on test set Dypgr = (X, Y)

» Desire a meta-learning algorithm

, o . (72) (1)
4 IﬂpUt meta—tl”alﬂlﬂg Set an,f—ta train — {(Dfrr”nw te:et)}n 1

» output: parameters @ representing a training algorithm

» objective: good performance on meta-test set Zmeta—test = {(D) DEINN

train?

META-LEARNING

ME TA-LEARNING

Meta-
Train

7% -
‘meta—=troarrn

Meta-

 Test
iF""'!"ajrnur-fﬂ -test

A META-LEARNING MODEL

* How to parametrize training algorithms?

» we take inspiration from the gradient descent algorithm:
0r = 0i1 — Ve, Ly

» we parametrize this update similarly to LSTM state updates:
¢t = Jt © 1+ 1t © &

- state C¢ is model M 's parameters
- state candidate C¢ is the negative gradient

- Jtand 4 are LSTM gates:
it — 0 (WI ' [v@t_lﬁta £t7 9t—17it—1] e b[)
fi=0(Wg- |V, L4,L4,0:_1, fr—1] + bF)

META-LEARNING UPDATES

gmeta—tra'in D(n)
train
(X1,Y1)
v
T

Meta-learner [

(LSTM)

META-LEARNING UPDATES

gmeta—train

Dic

(X1, Y1)
v

L
t(a%l/r[r;er '(V) (V) [VT Lr)

<

Meta-learner [

(LSTM)

PSEUDOCODE

Algorithm 1 Train Meta-Learner

Input: Meta-training set Zpeta—train, Learner M with parameters 6, Meta-Learner R with
parameters O.

1: ©y < random initialization

2:

3: ford=1,ndo

4: Dirwin, Diest <+ random dataset from 9,,,ct4—train

5: 0y < co > Intialize learner parameters

6:

7: fort=1,Tdo

8: X, Y; < random batch from Dy,qin

9: Ly LM (Xy;0:-1),Yy) > Get loss of learner on train batch
10: ct < R((Vo, L4,L4);04-1) > Get output of meta-learner using Equation 2
11: 0; < ¢y > Update learner parameters
12: end for
13:
14: X, Y Dot
15: Licst < L(M(X;07),Y) > Get loss of learner on test batch
16: Update O4 using Vg, | Liest > Update meta-learner parameters
17:

18: end for

10O SUM UP

* We use our meta-learning LSTM to model parameter dynamics during training

» LSTM parameters are shared across M 's parameters (i.e. treated like a large minibatch)

» learns ¢g, which is like learning M's inrtialization

* Inputs to meta-learning LSTM are the loss and gradient of learner

» we use the preprocessing proposed by Andrychowicz et al. (2016)

* It Is trained to produce parameters that have low loss on the corresponding test set

» possible thanks to backprop (though we ignore gradients through the inputs of the LSTM)

» Model M uses batch normalization

» we are careful to avoid “leakage™ between and within meta-sets

RELATED WORK

» Learning to learn using gradient descent (200 1)
Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell

» LSTM-based meta-learner that isn't using M's gradients and was applied to synthetic learning problems

» Gradient-based hyperparameter optimization through reversible learning (2015)
Dougal Maclaurin, David Duvenaud, and Ryan P Adams

» learns the learning rates of each time-step of minibatch SGD

* Learning to learn by gradient descent by gradient descent (2016)
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, and Nando de Freitas

» LSTM outputs the update, instead of using its cell state explicitly for that

» Matching networks for one shot learning (2016)
Oriol Vinyals, Charles Blundell, Timothy P, Lillicrap, Koray Kavukcuoglu, and Daan Wierstra

» learns a metric that generalizes well to new dataset with meta-learning

EXPERIMEN T

* Mini-ImageNet

» random subset of 100 classes (64 meta-training, |6 meta-validation, 20 meta-testing)

» random sets Dyrqin are generated by randomly picking 5 classes from class subset

» model M is a small 4-layer CNN; meta-learner LSTM has 2 layers

Model S-class
1-shot 5-shot
Baseline-finetune 28.80 £ 0.54% 49.79 4+ 0.79%
Baseline-nearest-neighbor 41.08 £ 0.70% 51.04 4+ 0.65%
Matching Network 43.40 £0.78% 51.09 £0.71%
Matching Network FCE 43.56 == 0.84% 50.31 = 0.73%
Meta-Learner LSTM (OURS) 43.44 + 0.77% 60.60 += 0.71%

EXPERIMEN T

* Learned Iinput gates

;
<
!

|-shot learning >-shot learning

IN CONCLUSION

* We consider learning on multi-domain data, in the form of few-shot learning
problem

» rather than usual train/test dataset split, each dataset consists of a set of datasets

* We parameterize a training algorithm in the form of a LSTM

» we train the meta-learner LSTM end-to-end on few-shot learning task

» parameters of LSTM represent both the training algorithm and initialization of model M

* We evaluate our meta-learner model on mini-ImageNet dataset

» the meta-learner model Is competitive with state-of-the-art metric-learning methods

THANKS!

